skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tu, Jingxuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cross-Document Event Coreference (CDEC) annotation is challenging and difficult to scale, resulting in existing datasets being small and lacking diversity. We introduce a new approach leveraging large language models (LLMs) to decontextualize event mentions, by simplifying the document-level annotation task to sentence pairs with enriched context, enabling the creation of Richer EventCorefBank (RECB), a denser and more expressive dataset annotated at faster speed. Decontextualization has been shown to improve annotation speed without compromising quality and to enhance model performance. Our baseline experiment indicates that systems trained on RECB achieve comparable results on the EventCorefBank(ECB+) test set, showing the high quality of our dataset and its generalizability on other CDEC datasets. In addition, our evaluation shows that the strong baseline models are still struggling with RECB comparing to other CDEC datasets, suggesting that the richness and diversity of RECB present significant challenges to current CDEC systems. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Multimodal dialogue involving multiple participants presents complex computational challenges, primarily due to the rich interplay of diverse communicative modalities including speech, gesture, action, and gaze. These modalities interact in complex ways that traditional dialogue systems often struggle to accurately track and interpret. To address these challenges, we extend the textual enrichment strategy of Dense Paraphrasing (DP), by translating each nonverbal modality into linguistic expressions. By normalizing multimodal information into a language-based form, we hope to both simplify the representation for and enhance the computational understanding of situated dialogues. We show the effectiveness of the dense paraphrased language form by evaluating instruction-tuned Large Language Models (LLMs) against the Common Ground Tracking (CGT) problem using a publicly available collaborative problem-solving dialogue dataset. Instead of using multimodal LLMs, the dense paraphrasing technique represents the dialogue information from multiple modalities in a compact and structured machine-readable text format that can be directly processed by the language-only models. We leverage the capability of LLMs to transform machine-readable paraphrases into human-readable paraphrases, and show that this process can further improve the result on the CGT task. Overall, the results show that augmenting the context with dense paraphrasing effectively facilitates the LLMs' alignment of information from multiple modalities, and in turn largely improves the performance of common ground reasoning over the baselines. Our proposed pipeline with original utterances as input context already achieves comparable results to the baseline that utilized decontextualized utterances which contain rich coreference information. When also using the decontextualized input, our pipeline largely improves the performance of common ground reasoning over the baselines. We discuss the potential of DP to create a robust model that can effectively interpret and integrate the subtleties of multimodal communication, thereby improving dialogue system performance in real-world settings. 
    more » « less
    Free, publicly-accessible full text available December 19, 2025
  3. In the realm of collaborative learning, extracting the beliefs shared within a group is a critical capability to navigate complex tasks. Inherent in this problem is the fact that in naturalistic collaborative discourse, the same propositional content may be expressed in radically different ways. This difficulty is exacerbated when speech overlaps and other communicative modalities are used, as would be the case in a co-situated collaborative task. In this paper, we conduct a comparative methodological analysis of extraction techniques for task-relevant propositions from natural speech dialogues in a challenging shared task setting where participants collaboratively determine the weights of five blocks using only a balance scale. We encode utterances and candidate propositions through language models and compare a cross-encoder method, adapted from coreference research, to a vector similarity baseline. Our cross-encoder approach outperforms both a cosine similarity baseline and zero-shot inference by both the GPT-4 and LLaMA 2 language models, and we establish a novel baseline on this challenging task on two collaborative task datasets---the Weights Task and DeliData---showing the generalizability of our approach. Furthermore, we explore the use of state of the art large language models for data augmentation to enhance performance, extend our examination to transcripts generated by Google's Automatic Speech Recognition system to assess the potential for automating the propositional extraction process in real-time, and introduce a framework for live propositional extraction from natural speech and multimodal signals. This study not only demonstrates the feasibility of detecting collaboration-relevant content in unstructured interactions but also lays the groundwork for employing AI to enhance collaborative problem-solving in classrooms, and other collaborative settings, such as the workforce. Our code may be found at: (https://github.com/csu-signal/PropositionExtraction). 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. This paper presents the Hallucination Recognition Model for New Experiment Evaluation (HaRMoNEE) team’s winning (#1) and #10 submissions for SemEval-2024 Task 6: Sharedtask on Hallucinations and Related Observable Overgeneration Mistakes (SHROOM)’s two subtasks. This task challenged its participants to design systems to detect hallucinations in Large Language Model (LLM) outputs. Team HaRMoNEE proposes two architectures: (1) fine-tuning an off-the-shelf transformer-based model and (2) prompt tuning large-scale Large Language Models (LLMs). One submission from the fine-tuning approach outperformed all other submissions for the model-aware subtask; one submission from the prompt-tuning approach is the 10th-best submission on the leaderboard for the modelagnostic subtask. Our systems also include pre-processing, system-specific tuning, postprocessing, and evaluation. 
    more » « less
  5. Semantic textual similarity (STS) is a fundamental NLP task that measures the semantic similarity between a pair of sentences. In order to reduce the inherent ambiguity posed from the sentences, a recent work called Conditional STS (C-STS) has been proposed to measure the sentences’ similarity conditioned on a certain aspect. Despite the popularity of C-STS, we find that the current C-STS dataset suffers from various issues that could impede proper evaluation on this task. In this paper, we reannotate the C-STS validation set and observe an annotator discrepancy on 55% of the instances resulting from the annotation errors in the original label, ill-defined conditions, and the lack of clarity in the task definition. After a thorough dataset analysis, we improve the C-STS task by leveraging the models’ capability to understand the conditions under a QA task setting. With the generated answers, we present an automatic error identification pipeline that is able to identify annotation errors from the C-STS data with over 80% F1 score. We also propose a new method that largely improves the performance over baselines on the C-STS data by training the models with the answers. Finally we discuss the conditionality annotation based on the typed-feature structure (TFS) of entity types. We show in examples that the TFS is able to provide a linguistic foundation for constructing C-STS data with new conditions. 
    more » « less
  6. This paper introduces GLAMR, an Abstract Meaning Representation (AMR) interpretation of Generative Lexicon (GL) semantic components. It includes a structured subeventual interpretation of linguistic predicates, and encoding of the opposition structure of property changes of event arguments. Both of these features are recently encoded in VerbNet (VN), and form the scaffolding for the semantic form associated with VN frame files. We develop a new syntax, concepts, and roles for subevent structure based on VN for connecting subevents to atomic predicates. Our proposed extension is compatible with current AMR specification. We also present an approach to automatically augment AMR graphs by inserting subevent structure of the predicates and identifying the subevent arguments from the semantic roles. A pilot annotation of GLAMR graphs of 65 documents (486 sentences), based on procedural texts as a source, is presented as a public dataset. The annotation includes subevents, argument property change, and document-level anaphoric links. Finally, we provide baseline models for converting text to GLAMR and vice versa, along with the application of GLAMR for generating enriched paraphrases with details on subevent transformation and arguments that are not present in the surface form of the texts. 
    more » « less
  7. This paper introduces GLAMR, an Abstract Meaning Representation (AMR) interpretation of Generative Lexicon (GL) semantic components. It includes a structured subeventual interpretation of linguistic predicates, and encoding of the opposition structure of property changes of event arguments. Both of these features are recently encoded in VerbNet (VN), and form the scaffolding for the semantic form associated with VN frame files. We develop a new syntax, concepts, and roles for subevent structure based on VN for connecting subevents to atomic predicates. Our proposed extension is compatible with current AMR specification. We also present an approach to automatically augment AMR graphs by inserting subevent structure of the predicates and identifying the subevent arguments from the semantic roles. A pilot annotation of GLAMR graphs of 65 documents (486 sentences), based on procedural texts as a source, is presented as a public dataset. The annotation includes subevents, argument property change, and document-level anaphoric links. Finally, we provide baseline models for converting text to GLAMR and vice versa, along with the application of GLAMR for generating enriched paraphrases with details on subevent transformation and arguments that are not present in the surface form of the texts. 
    more » « less
  8. Within Dialogue Modeling research in AI and NLP, considerable attention has been spent on “dialogue state tracking” (DST), which is the ability to update the representations of the speaker’s needs at each turn in the dialogue by taking into account the past dialogue moves and history. Less studied but just as important to dialogue modeling, however, is “common ground tracking” (CGT), which identifies the shared belief space held by all of the participants in a task-oriented dialogue: the task-relevant propositions all participants accept as true. In this paper we present a method for automatically identifying the current set of shared beliefs and “questions under discussion” (QUDs) of a group with a shared goal. We annotate a dataset of multimodal interactions in a shared physical space with speech transcriptions, prosodic features, gestures, actions, and facets of collaboration, and operationalize these features for use in a deep neural model to predict moves toward construction of common ground. Model outputs cascade into a set of formal closure rules derived from situated evidence and belief axioms and update operations. We empirically assess the contribution of each feature type toward successful construction of common ground relative to ground truth, establishing a benchmark in this novel, challenging task. 
    more » « less